Autor: |
Qianyou Fan, Shuangcheng Zhang, Yufen Niu, Jinzhao Si, Xuhao Li, Wenhui Wu, Xiaolong Zeng, Jianwen Jiang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Remote Sensing, Vol 16, Iss 10, p 1739 (2024) |
Druh dokumentu: |
article |
ISSN: |
2072-4292 |
DOI: |
10.3390/rs16101739 |
Popis: |
The continuous downward movement exhibited by the Lashagou landslide group in recent years poses a significant threat to the safety of both vehicles and pedestrians traversing the highway G310. By integrating geomorphological interpretation using multi-temporal optical images, interferometric synthetic aperture radar (InSAR) measurements, and continuous global navigation satellite system (GNSS) observations, this paper traced the formation period of the Lashagou landslide group, and explored its kinematic behavior under external drivers such as rainfall and snowmelt. The results indicate that the formation period can be specifically categorized into three periods: before, during, and after the construction of highway G310. The construction of highway G310 is the direct cause and prerequisite for the formation of the Lashagou landslide group, whereas summer precipitation and spring snowmelt are the external driving factors contributing to its continuous downward movement. Additionally, both the long-term seasonal downslope movement and transient acceleration events are strongly controlled by rainfall, and there is a time lag of approximately 1–2 days between the transient acceleration and heavy rainfall events. This study highlights the benefits of leveraging multi-source remote sensing data to investigate slow-moving landslides, which is advantageous for the implementation of effective control and engineering intervention to mitigate potential landslide disasters. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|