Machine learning to predict risk for community-onset Staphylococcus aureus infections in children living in southeastern United States.

Autor: Xiting Lin, Ruijin Geng, Kurt Menke, Mike Edelson, Fengxia Yan, Traci Leong, George S Rust, Lance A Waller, Erica L Johnson, Lilly Cheng Immergluck
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: PLoS ONE, Vol 18, Iss 9, p e0290375 (2023)
Druh dokumentu: article
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0290375&type=printable
Popis: Staphylococcus aureus (S. aureus) is known to cause human infections and since the late 1990s, community-onset antibiotic resistant infections (methicillin resistant S. aureus (MRSA)) continue to cause significant infections in the United States. Skin and soft tissue infections (SSTIs) still account for the majority of these in the outpatient setting. Machine learning can predict the location-based risks for community-level S. aureus infections. Multi-year (2002-2016) electronic health records of children
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje