Autor: |
Samantha G Zeitlin, Brian R Chapados, Norman M Baker, Caroline Tai, Geir Slupphaug, Jean Y J Wang |
Jazyk: |
angličtina |
Rok vydání: |
2011 |
Předmět: |
|
Zdroj: |
PLoS ONE, Vol 6, Iss 3, p e17151 (2011) |
Druh dokumentu: |
article |
ISSN: |
1932-6203 |
DOI: |
10.1371/journal.pone.0017151 |
Popis: |
Uracil is removed from DNA by the conserved enzyme uracil DNA N-glycosylase (UNG). Previously, we observed that inhibiting UNG in Xenopus egg extracts blocked assembly of CENP-A, a histone H3 variant. CENP-A is an essential protein in all species, since it is required for chromosome segregation during mitosis. Thus, the implication of UNG in CENP-A assembly implies that UNG would also be essential, but UNG mutants lacking catalytic activity are viable in all species. In this paper, we present evidence that UNG2 colocalizes with CENP-A and H2AX phosphorylation at centromeres in normally cycling cells. Reduction of UNG2 in human cells blocks CENP-A assembly, and results in reduced cell proliferation, associated with increased frequencies of mitotic abnormalities and rapid cell death. Overexpression of UNG2 induces high levels of CENP-A assembly in human cells. Using a multiphoton laser approach, we demonstrate that UNG2 is rapidly recruited to sites of DNA damage. Taken together, our data are consistent with a model in which the N-terminus of UNG2 interacts with the active site of the enzyme and with chromatin. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|