Direct summands of Goldie extending elements in modular lattices
Autor: | Rupal Shroff |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Mathematica Bohemica, Vol 147, Iss 3, Pp 359-368 (2022) |
Druh dokumentu: | article |
ISSN: | 0862-7959 2464-7136 |
DOI: | 10.21136/MB.2021.0181-20 |
Popis: | In this paper some results on direct summands of Goldie extending elements are studied in a modular lattice. An element $a$ of a lattice $L$ with $0$ is said to be a Goldie extending element if and only if for every $b \leq a$ there exists a direct summand $c$ of $a$ such that $b \wedge c$ is essential in both $b$ and $c$. Some characterizations of decomposition of a Goldie extending element in a modular lattice are obtained. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |