Direct summands of Goldie extending elements in modular lattices

Autor: Rupal Shroff
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Mathematica Bohemica, Vol 147, Iss 3, Pp 359-368 (2022)
Druh dokumentu: article
ISSN: 0862-7959
2464-7136
DOI: 10.21136/MB.2021.0181-20
Popis: In this paper some results on direct summands of Goldie extending elements are studied in a modular lattice. An element $a$ of a lattice $L$ with $0$ is said to be a Goldie extending element if and only if for every $b \leq a$ there exists a direct summand $c$ of $a$ such that $b \wedge c$ is essential in both $b$ and $c$. Some characterizations of decomposition of a Goldie extending element in a modular lattice are obtained.
Databáze: Directory of Open Access Journals