The long-term differentiation of embryonic stem cells into cardiomyocytes: an indirect co-culture model.

Autor: Dong-Bo Ou, Di Zeng, Yan Jin, Xiong-Tao Liu, Ji-Wei Teng, Wan-Gang Guo, Hong-Tao Wang, Fei-Fei Su, Yong He, Qiang-Sun Zheng
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: PLoS ONE, Vol 8, Iss 1, p e55233 (2013)
Druh dokumentu: article
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0055233
Popis: BACKGROUND: Embryonic Stem Cells (ESCs) can differentiate into cardiomyocytes (CMs) in vitro but the differentiation level from ESCs is low. Here we describe a simple co-culture model by commercially available Millicell™ hanging cell culture inserts to control the long-term differentiation of ESCs into CMs. METHODOLOGY/PRINCIPAL FINDINGS: Mouse ESCs were cultured in hanging drops to form embryoid bodies (EBs) and treated with 0.1 mmol/L ascorbic acid to induce the differentiation of ESCs into CMs. In the indirect co-culture system, EBs were co-cultured with epidermal keratinocytes (EKs) or neonatal CMs (NCMs) by the hanging cell culture inserts (PET membranes with 1 µm pores). The molecular expressions and functional properties of ESC-derived CMs in prolonged culture course were evaluated. During time course of ESC differentiation, the percentages of EBs with contracting areas in NCMs co-culture were significantly higher than that without co-culture or in EKs co-culture. The functional maintenance of ESC-derived CMs were more prominent in NCMs co-culture model. CONCLUSIONS/SIGNIFICANCE: These results indicate that NCMs co-culture promote ESC differentiation and has a further effect on cell growth and differentiation. We assume that the improvement of the differentiating efficiency of ESCs into CMs in the co-culture system do not result from the effect of co-culture directly on cell differentiation, but rather by signaling effects that influence the cells in proliferation and long-term function maintenance.
Databáze: Directory of Open Access Journals