Autor: |
Alison D. McNeilly, Adonis Yianakas, Jennifer G. Gallagher, Jamie Tarlton, Michael LJ. Ashford, Rory J. McCrimmon |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Molecular Metabolism, Vol 61, Iss , Pp 101488- (2022) |
Druh dokumentu: |
article |
ISSN: |
2212-8778 |
DOI: |
10.1016/j.molmet.2022.101488 |
Popis: |
Objective: IL-6 is an important contributor to glucose and energy homeostasis through changes in whole-body glucose disposal, insulin sensitivity, food intake and energy expenditure. However, the relative contributions of peripheral versus central IL-6 signaling to these metabolic actions are presently unclear. A conditional mouse model with reduced brain IL-6Ra expression was used to explore how blunted central IL-6 signaling alters metabolic status in lean and obese mice. Methods: Transgenic mice with reduced levels of central IL-6 receptor alpha (IL-6Ra) (IL-6Ra KD mice) and Nestin Cre controls (Cre+/- mice) were fed standard chow or high-fat diet for 20 weeks. Obese and lean mouse cohorts underwent metabolic phenotyping with various measures of energy and glucose homeostasis determined. Glucose-stimulated insulin secretion was assessed in vivo and ex vivo in both mouse groups. Results: IL-6Ra KD mice exhibited altered body fat mass, liver steatosis, plasma insulin, IL-6 and NEFA levels versus Cre+/- mice in a diet-dependent manner. IL-6Ra KD mice had increased food intake, higher RER, decreased energy expenditure with diminished cold tolerance compared to Cre+/- controls. Standard chow-fed IL-6Ra KD mice displayed reduced plasma insulin and glucose-stimulated insulin secretion with impaired glucose disposal and unchanged insulin sensitivity. Isolated pancreatic islets from standard chow-fed IL-6Ra KD mice showed comparable morphology and glucose-stimulated insulin secretion to Cre+/- controls. The diminished in vivo insulin secretion exhibited by IL-6Ra KD mice was recovered by blockade of autonomic ganglia. Conclusions: This study shows that central IL-6Ra signaling contributes to glucose and energy control mechanisms by regulating food intake, energy expenditure, fuel flexibility and insulin secretion. A plausible mechanism linking central IL-6Ra signaling and pancreatic insulin secretion is through the modulation of autonomic output activity. Thus, brain IL-6 signaling may contribute to the central adaptive mechanisms engaged in response to metabolic stress. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|