Time-Domain Transfer Learning for Accurate Heavy Metal Concentration Retrieval Using Remote Sensing and TrAdaBoost Algorithm: A Case Study of Daxigou, China

Autor: Yun Yang, Qingzhen Tian, Han Bai, Yongqiang Wei, Yi Yan, Aidi Huo
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Water, Vol 16, Iss 10, p 1439 (2024)
Druh dokumentu: article
ISSN: 2073-4441
DOI: 10.3390/w16101439
Popis: Traditionally, the assessment of heavy metal concentrations using remote sensing technology is sample-intensive, with expensive model development. Using a mining area case study of Daxigou, China, we propose a cross-time-domain transfer learning model to monitor heavy metal pollution using samples collected from different time domains. Specifically, spectral indices derived from Landsat 8 multispectral images, terrain, and other auxiliary data correlative to soil heavy metals were prepared. A cross time-domain sample transfer learning model proposed in the paper based on the TrAdaBoost algorithm was used for the Cu content mapping in the topsoil by selective use of soil samples acquired in 2017 and 2019. We found that the proposed model accurately estimated the concentration of Cu in the topsoil of the mining area in 2019 and performed better than the traditional TrAdaBoost algorithms. The goodness of fit (R2) of the test set increased from 0.55 to 0.66; the relative prediction deviation (RPD) increased from 1.37 to 1.76; and finally, the root-mean-square deviation (RMSE), decreased from 8.33 to 7.24 mg·kg−1. The proposed model is potentially applicable to more accurate and inexpensive monitoring of heavy metals, facilitating remediation-related efforts.
Databáze: Directory of Open Access Journals