Nonparametric relative recursive regression
Autor: | Slaoui Yousri, Khardani Salah |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Dependence Modeling, Vol 8, Iss 1, Pp 221-238 (2020) |
Druh dokumentu: | article |
ISSN: | 2300-2298 2020-0013 |
DOI: | 10.1515/demo-2020-0013 |
Popis: | In this paper, we propose the problem of estimating a regression function recursively based on the minimization of the Mean Squared Relative Error (MSRE), where outlier data are present and the response variable of the model is positive. We construct an alternative estimation of the regression function using a stochastic approximation method. The Bias, variance, and Mean Integrated Squared Error (MISE) are computed explicitly. The asymptotic normality of the proposed estimator is also proved. Moreover, we conduct a simulation to compare the performance of our proposed estimators with that of the two classical kernel regression estimators and then through a real Malaria dataset. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |