Mutant Number Laws and Infinite Divisibility

Autor: Anthony G. Pakes
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Axioms, Vol 11, Iss 11, p 584 (2022)
Druh dokumentu: article
ISSN: 2075-1680
DOI: 10.3390/axioms11110584
Popis: Concepts of infinitely divisible distributions are reviewed and applied to mutant number distributions derived from the Lea-Coulson and other models which describe the Luria-Delbrück fluctuation test. A key finding is that mutant number distributions arising from a generalised Lea-Coulson model for which normal cell growth is non-decreasing are unimodal. An integral criterion is given which separates the cases of a mode at the origin, or not.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje