BV Solutions to Evolution Inclusion with a Time and Space Dependent Maximal Monotone Operator

Autor: Charles Castaing, Christiane Godet-Thobie, Manuel D. P. Monteiro Marques
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Mathematics, Vol 12, Iss 6, p 896 (2024)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math12060896
Popis: This paper deals with the research of solutions of bounded variation (BV) to evolution inclusion coupled with a time and state dependent maximal monotone operator. Different problems are studied: existence of solutions, unicity of the solution, existence of periodic and bounded variation right continuous (BVRC) solutions. Second-order evolution inclusions and fractional (Caputo and Riemann–Liouville) differential inclusions are also considered. A result of the Skorohod problem driven by a time- and space-dependent operator under rough signal and a Volterra integral perturbation in the BRC setting is given. The paper finishes with some results for fractional differential inclusions under rough signals and Young integrals. Many of the given results are novel.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje