On connections with torsion on nonholonomic para-Kenmotsu manifolds

Autor: A. V. Bukusheva
Jazyk: English<br />Russian
Rok vydání: 2023
Předmět:
Zdroj: Дифференциальная геометрия многообразий фигур, Vol 54, Iss 1, Pp 49-63 (2023)
Druh dokumentu: article
ISSN: 0321-4796
2782-3229
DOI: 10.5922/0321-4796-2023-54-1-6
Popis: The concept of a nonholonomic para-Kenmotsu manifold is intro­duced. A nonholonomic para-Kenmotsu manifold is a natural generaliza­tion of a para-Kenmotsu manifold; the distribution of a nonholonomic para-Kenmotsu manifold does not need to be involutive. Properly nonho­lonomic para-Kenmotsu manifolds are singled out, these are nonho­lono­mic para-Kenmotsu manifolds with non-involutive distribution. On an al­most (para-)contact metric manifold, we introduce a metric connec­tion with torsion, which is called a connection of Levi-Civita type in this pa­per. In the case of a nonholonomic para-Kenmotsu manifold, such a con­nection has a simpler structure than the Levi-Civita connection, and in so­me cases it turns out to be preferable from an applied point of view. A Le­vi-Civita type connection coincides with a Levi-Civita connec­tion if and only if a nonholonomic para-Kenmotsu manifold reduc­es to a para-Ken­motsu manifold. It is proved that a proper nonholonomic para-Ken­motsu manifold cannot carry the structure of an Einstein mani­fold with respect to a connection of the Levi-Civita type.
Databáze: Directory of Open Access Journals