Popis: |
Climate change and improving building energy performance are significant contemporary concerns. Conversely, climate-adaptive building envelopes (CABEs) offer promising solutions to enhance structural performance amidst fluctuating environmental conditions. Despite extensive research, few studies have compared the general movement strategies of climate-specific CABEs. Thus, this study examines common movement methods—Changing Opening Percentage (COP), Changing Shading Angle (CSA), Changing Fraction Axis (CFA), and Changing Pattern Geometry (CPG)—in terms of their energy and daylight performance in Mashhad, Iran's cold semi-arid climate (BSk). Simulation using LBT 1.6.1, a Grasshopper plugin in Rhinoceros, assessed Energy Usage Intensity (EUI), Spatial Daylight Autonomy (sDA), and Annual Sun Exposure (ASE). The results highlight the COP-CSA integrated model as optimal, achieving a 4-8% reduction in energy usage intensity, thus demonstrating its efficacy amid climate change. |