Autor: |
Pannawat Eakawinrujee, Nantapath Trakultraipruk |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Opuscula Mathematica, Vol 42, Iss 1, Pp 31-54 (2022) |
Druh dokumentu: |
article |
ISSN: |
1232-9274 |
DOI: |
10.7494/OpMath.2022.42.1.31 |
Popis: |
A paired dominating set of a graph \(G\) is a dominating set whose induced subgraph contains a perfect matching. The paired domination number, denoted by \(\gamma_{pr}(G)\), is the minimum cardinality of a paired dominating set of \(G\). A \(\gamma_{pr}(G)\)-set is a paired dominating set of cardinality \(\gamma_{pr}(G)\). The \(\gamma\)-paired dominating graph of \(G\), denoted by \(PD_{\gamma}(G)\), as the graph whose vertices are \(\gamma_{pr}(G)\)-sets. Two \(\gamma_{pr}(G)\)-sets \(D_1\) and \(D_2\) are adjacent in \(PD_{\gamma}(G)\) if there exists a vertex \(u\in D_1\) and a vertex \(v\notin D_1\) such that \(D_2=(D_1\setminus \{u\})\cup \{v\}\). In this paper, we present the \(\gamma\)-paired dominating graphs of cycles. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|