Exploring the Diversity of the Thioredoxin Systems in Cyanobacteria

Autor: Manuel J. Mallén-Ponce, María José Huertas, Francisco J. Florencio
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Antioxidants, Vol 11, Iss 4, p 654 (2022)
Druh dokumentu: article
ISSN: 2076-3921
DOI: 10.3390/antiox11040654
Popis: Cyanobacteria evolved the ability to perform oxygenic photosynthesis using light energy to reduce CO2 from electrons extracted from water and form nutrients. These organisms also developed light-dependent redox regulation through the Trx system, formed by thioredoxins (Trxs) and thioredoxin reductases (TRs). Trxs are thiol-disulfide oxidoreductases that serve as reducing substrates for target enzymes involved in numerous processes such as photosynthetic CO2 fixation and stress responses. We focus on the evolutionary diversity of Trx systems in cyanobacteria and discuss their phylogenetic relationships. The study shows that most cyanobacteria contain at least one copy of each identified Trx, and TrxA is the only one present in all genomes analyzed. Ferredoxin thioredoxin reductase (FTR) is present in all groups except Gloeobacter and Prochlorococcus, where there is a ferredoxin flavin-thioredoxin reductase (FFTR). Our data suggest that both TRs may have coexisted in ancestral cyanobacteria together with other evolutionarily related proteins such as NTRC or DDOR, probably used against oxidative stress. Phylogenetic studies indicate that they have different evolutionary histories. As cyanobacteria diversified to occupy new habitats, some of these proteins were gradually lost in some groups. Finally, we also review the physiological relevance of redox regulation in cyanobacteria through the study of target enzymes.
Databáze: Directory of Open Access Journals