Autor: |
Cyril Besnard, Ali Marie, Petr Buček, Sisini Sasidharan, Robert A. Harper, Shashidhara Marathe, Kaz Wanelik, Gabriel Landini, Richard M. Shelton, Alexander M. Korsunsky |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Materials & Design, Vol 220, Iss , Pp 110829- (2022) |
Druh dokumentu: |
article |
ISSN: |
0264-1275 |
DOI: |
10.1016/j.matdes.2022.110829 |
Popis: |
Dental caries is a widespread disease that proceeds by damaging superficial tooth enamel by heterogeneous dissolution. Conventional histology identifies different zones within carious lesions by their optical appearance, but fails to quantify the underlying nanoscale structural changes as a function of specific location, impeding better understanding of the demineralisation process. We employ detailed collocative analysis using different imaging modalities, resolutions and fields of view. Focused ion beam-scanning electron microscopy (FIB-SEM) reveals subsurface 3D nanostructure within milled micro-sized volumes, whilst X-ray tomography allows minimally destructive 3D imaging over large volumes. Correlative combination of these techniques reveals fine detail of enamel rods, inter-rod substance, sheaths, crystallites and voids as a function of location. The degree of enamel demineralisation within the body of the lesion, near its front, and at the surface is visualized and quantified in 3D. We thus establish the paradigm of dental 3D nano-histology as an advanced platform for quantitative evaluation of caries-induced structural modification. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|