Risk-averse Reinforcement Learning for Portfolio Optimization

Autor: Bayaraa Enkhsaikhan, Ohyun Jo
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: ICT Express, Vol 10, Iss 4, Pp 857-862 (2024)
Druh dokumentu: article
ISSN: 2405-9595
DOI: 10.1016/j.icte.2024.04.010
Popis: This investigation explores Reinforcement Learning (RL) for dynamic portfolio optimization with risk assessment. The challenges include market complexity, uncertain reactions, and regulatory requirements for risk-averse decisions. Our solution leverages Bayesian Neural Network (BNN) to capture uncertainties. We successfully implemented a risk-averse Reinforcement Learning algorithm, achieving 18 percent lower risk. Reinforcement Learning with risk-aversion shows promise for optimizing portfolios for risk-averse investors.
Databáze: Directory of Open Access Journals