Well-posed results for nonlocal biparabolic equation with linear and nonlinear source terms
Autor: | Le Dinh Long, Ho Duy Binh, Kim Van Ho Thi, Van Thinh Nguyen |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Advances in Difference Equations, Vol 2021, Iss 1, Pp 1-16 (2021) |
Druh dokumentu: | article |
ISSN: | 1687-1847 44289642 |
DOI: | 10.1186/s13662-021-03602-7 |
Popis: | Abstract In this paper, we consider the biparabolic problem under nonlocal conditions with both linear and nonlinear source terms. We derive the regularity property of the mild solution for the linear source term while we apply the Banach fixed-point theorem to study the existence and uniqueness of the mild solution for the nonlinear source term. In both cases, we show that the mild solution of our problem converges to the solution of an initial value problem as the parameter epsilon tends to zero. The novelty in our study can be considered as one of the first results on biparabolic equations with nonlocal conditions. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |