Global Guided Cross-Modal Cross-Scale Network for RGB-D Salient Object Detection

Autor: Shuaihui Wang, Fengyi Jiang, Boqian Xu
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Sensors, Vol 23, Iss 16, p 7221 (2023)
Druh dokumentu: article
ISSN: 1424-8220
DOI: 10.3390/s23167221
Popis: RGB-D saliency detection aims to accurately localize salient regions using the complementary information of a depth map. Global contexts carried by the deep layer are key to salient objection detection, but they are diluted when transferred to shallower layers. Besides, depth maps may contain misleading information due to the depth sensors. To tackle these issues, in this paper, we propose a new cross-modal cross-scale network for RGB-D salient object detection, where the global context information provides global guidance to boost performance in complex scenarios. First, we introduce a global guided cross-modal and cross-scale module named G2CMCSM to realize global guided cross-modal cross-scale fusion. Then, we employ feature refinement modules for progressive refinement in a coarse-to-fine manner. In addition, we adopt a hybrid loss function to supervise the training of G2CMCSNet over different scales. With all these modules working together, G2CMCSNet effectively enhances both salient object details and salient object localization. Extensive experiments on challenging benchmark datasets demonstrate that our G2CMCSNet outperforms existing state-of-the-art methods.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje