Autor: |
Steven Blinka, Michael H. Reimer Jr., Kirthi Pulakanti, Sridhar Rao |
Jazyk: |
angličtina |
Rok vydání: |
2016 |
Předmět: |
|
Zdroj: |
Cell Reports, Vol 17, Iss 1, Pp 19-28 (2016) |
Druh dokumentu: |
article |
ISSN: |
2211-1247 |
DOI: |
10.1016/j.celrep.2016.09.002 |
Popis: |
Super-enhancers are tissue-specific cis-regulatory elements that drive expression of genes associated with cell identity and malignancy. A cardinal feature of super-enhancers is that they are transcribed to produce enhancer-derived RNAs (eRNAs). It remains unclear whether super-enhancers robustly activate genes in situ and whether their functions are attributable to eRNAs or the DNA element. CRISPR/Cas9 was used to systematically delete three discrete super-enhancers at the Nanog locus in embryonic stem cells, revealing functional differences in Nanog transcriptional regulation. One distal super-enhancer 45 kb upstream of Nanog (−45 enhancer) regulates both nearest neighbor genes, Nanog and Dppa3. Interestingly, eRNAs produced at the −45 enhancer specifically regulate Dppa3 expression by stabilizing looping of the −45 enhancer and Dppa3. Our work illustrates that genomic editing is required to determine enhancer function and points to a method to selectively target a subset of super-enhancer-regulated genes by depleting eRNAs. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|