Lp(Lq)-Maximal Regularity for Damped Equations in a Cylindrical Domain

Autor: Edgardo Alvarez, Stiven Díaz, Carlos Lizama
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Fractal and Fractional, Vol 8, Iss 9, p 516 (2024)
Druh dokumentu: article
ISSN: 2504-3110
DOI: 10.3390/fractalfract8090516
Popis: We show maximal regularity estimates for the damped hyperbolic and strongly damped wave equations with periodic initial conditions in a cylindrical domain. We prove that this property strongly depends on a critical combination on the parameters of the equation. Noteworthy, our results are still valid for fractional powers of the negative Laplacian operator. We base our methods on the theory of operator-valued Fourier multipliers on vector-valued Lebesgue spaces of periodic functions.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje