Autor: |
Fabio Silva Botelho |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 11, Iss 1, p 63 (2022) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math11010063 |
Popis: |
This article develops dual variational formulations for a large class of models in variational optimization. The results are established through basic tools of functional analysis, convex analysis and duality theory. The main duality principle is developed as an application to a Ginzburg–Landau-type system in superconductivity in the absence of a magnetic field. In the first section, we develop new general dual convex variational formulations, more specifically, dual formulations with a large region of convexity around the critical points, which are suitable for the non-convex optimization for a large class of models in physics and engineering. Finally, in the last section, we present some numerical results concerning the generalized method of lines applied to a Ginzburg–Landau-type equation. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|