Cloud-Based Monitoring of Thermal Anomalies in Industrial Environments Using AI and the Internet of Robotic Things

Autor: Mohammed Ghazal, Tasnim Basmaji, Maha Yaghi, Mohammad Alkhedher, Mohamed Mahmoud, Ayman S. El-Baz
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Sensors, Vol 20, Iss 21, p 6348 (2020)
Druh dokumentu: article
ISSN: 1424-8220
DOI: 10.3390/s20216348
Popis: Recent advancements in cloud computing, artificial intelligence, and the internet of things (IoT) create new opportunities for autonomous industrial environments monitoring. Nevertheless, detecting anomalies in harsh industrial settings remains challenging. This paper proposes an edge-fog-cloud architecture with mobile IoT edge nodes carried on autonomous robots for thermal anomalies detection in aluminum factories. We use companion drones as fog nodes to deliver first response services and a cloud back-end for thermal anomalies analysis. We also propose a self-driving deep learning architecture and a thermal anomalies detection and visualization algorithm. Our results show our robot surveyors are low-cost, deliver reduced response time, and more accurately detect anomalies compared to human surveyors or fixed IoT nodes monitoring the same industrial area. Our self-driving architecture has a root mean square error of 0.19 comparable to VGG-19 with a significantly reduced complexity and three times the frame rate at 60 frames per second. Our thermal to visual registration algorithm maximizes mutual information in the image-gradient domain while adapting to different resolutions and camera frame rates.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje