The application of Rumex Abysinicus derived activated carbon/bentonite clay/graphene oxide/iron oxide nanocomposite for removal of chromium from aqueous solution

Autor: Solomon Tibebu, Estifanos Kassahun, Tigabu Haddis Ale, Abebe Worku, Takele Sime, Afework Aemro Berhanu, Belay Akino, Abrha Mulu Hailu, Lalise Wakshum Ayana, Abebaw Shibeshi, Mohammednur Abdu Mohammed, Niguse Kelile Lema, Andualem Arka Ammona, Aseged Tebeje, Gamachis Korsa, Abate Ayele, Saba Nuru, Seble Kebede, Shiferaw Ayalneh, Kenatu Angassa, Tsedekech Gebremeskel Weldmichael, Hailu Ashebir
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Scientific Reports, Vol 14, Iss 1, Pp 1-20 (2024)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-024-70238-4
Popis: Abstract Rapid industrialization has significantly boosted economic growth but has also introduced severe environmental challenges, particularly in water pollution. This study evaluates the effectiveness of a nanocomposite composed of Rumex Abyssinicus Activated Carbon/Acid Activated Bentonite Clay/Graphene Oxide, and Iron Oxide (RAAC/AABC/GO/Fe3O4) for chromium removal from aqueous solutions. The preparation of the nanocomposite involved precise methods, and its characterization was performed using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) surface area analysis, and the point of zero charge (pHpzc). Batch adsorption experiments were designed using Design Expert software with a central composite design under response surface methodology. The factors investigated included pH (3, 6, and 9), initial Cr (VI) concentration (40, 70, and 100 mg/L), adsorbent dose (0.5, 0.75, 1 g/200 mL), and contact time (60, 90, and 120 min). Adsorption isotherms were analyzed using nonlinearized Langmuir, Freundlich, and Temkin models, while pseudo-first-order and pseudo-second-order models were applied to adsorption kinetics. Characterization revealed a pHpzc of 8.25, a porous and heterogeneous surface (SEM), diverse functional groups (FTIR), an amorphous structure (XRD), and a significant surface area of 1201.23 m2/g (BET). The highest removal efficiency of 99.91% was achieved at pH 6, with an initial Cr (VI) concentration of 70 mg/L, a 90 min contact time, and an adsorbent dose of 1 g/200 mL. Optimization of the adsorption process identified optimal parameters as pH 5.84, initial Cr (VI) concentration of 88.94 mg/L, contact time of 60 min, and adsorbent dose of 0.52 g/200 mL. The Langmuir isotherm model, with an R2 value of 0.92836, best described the adsorption process, indicating a monolayer adsorption mechanism. The pseudo-second-order kinetics model provided the best fit with an R2 value of 0.988. Overall, the nanocomposite demonstrates significant potential as a cost-effective and environmentally friendly solution for chromium removal from wastewater.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje