Autor: |
Dyachenko Alexander, Tyaglov Mikhail |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Special Matrices, Vol 12, Iss 1, Pp 4017-4031 (2024) |
Druh dokumentu: |
article |
ISSN: |
2300-7451 |
DOI: |
10.1515/spma-2024-0009 |
Popis: |
We find the spectrum and eigenvectors of an arbitrary irreducible complex tridiagonal matrix with two-periodic main diagonal. This is expressed in terms of the spectrum and eigenvectors of the matrix with the same sub- and superdiagonals and zero main diagonal. Our result generalises some recent results where the latter matrix stemmed from certain discrete orthogonal polynomials including specific cases of the classical Krawtchouk and Hahn polynomials. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|