Genome-wide identification and expression analysis of the Eriobotrya japonica TIFY gene family reveals its functional diversity under abiotic stress conditions

Autor: Xulin Li, Ke Wen, Ling Zhu, Chaoying Chen, Tuo Yin, Xiuyao Yang, Ke Zhao, Yinqiang Zi, Huiyun Zhang, Xinping Luo, Hanyao Zhang
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: BMC Genomics, Vol 25, Iss 1, Pp 1-19 (2024)
Druh dokumentu: article
ISSN: 1471-2164
DOI: 10.1186/s12864-024-10375-2
Popis: Abstract Background Plant-specific TIFY proteins are widely found in terrestrial plants and play important roles in plant adversity responses. Although the genome of loquat at the chromosome level has been published, studies on the TIFY family in loquat are lacking. Therefore, the EjTIFY gene family was bioinformatically analyzed by constructing a phylogenetic tree, chromosomal localization, gene structure, and adversity expression profiling in this study. Results Twenty-six EjTIFY genes were identified and categorized into four subfamilies (ZML, JAZ, PPD, and TIFY) based on their structural domains. Twenty-four EjTIFY genes were irregularly distributed on 11 of the 17 chromosomes, and the remaining two genes were distributed in fragments. We identified 15 covariate TIFY gene pairs in the loquat genome, 13 of which were involved in large-scale interchromosomal segmental duplication events, and two of which were involved in tandem duplication events. Many abiotic stress cis-elements were widely present in the promoter region. Analysis of the Ka/Ks ratio showed that the paralogous homologs of the EjTIFY family were mainly subjected to purifying selection. Analysis of the RNA-seq data revealed that a total of five differentially expressed genes (DEGs) were expressed in the shoots under gibberellin treatment, whereas only one gene was significantly differentially expressed in the leaves; under both low-temperature and high-temperature stresses, there were significantly differentially expressed genes, and the EjJAZ15 gene was significantly upregulated under both low- and high-temperature stress. RNA-seq and qRT-PCR expression analysis under salt stress conditions revealed that EjJAZ2, EjJAZ4, and EjJAZ9 responded to salt stress in loquat plants, which promoted resistance to salt stress through the JA pathway. The response model of the TIFY genes in the jasmonic acid pathway under salt stress in loquat was systematically summarized. Conclusions These results provide a theoretical basis for exploring the characteristics and functions of additional EjTIFY genes in the future. This study also provides a theoretical basis for further research on breeding for salt stress resistance in loquat. RT-qPCR analysis revealed that the expression of one of the three EjTIFY genes increased and the expression of two decreased under salt stress conditions, suggesting that EjTIFY exhibited different expression patterns under salt stress conditions.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje