Fe3O4 coated stent prevent artery neointimal hyperplasia by inhibiting vascular smooth muscle cell proliferation

Autor: Yalan Deng, Jiabing Huang, Changqing Chen, Yanbing Wen, Dongxu Qiu
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Materials Today Bio, Vol 27, Iss , Pp 101133- (2024)
Druh dokumentu: article
ISSN: 2590-0064
DOI: 10.1016/j.mtbio.2024.101133
Popis: In-stent restenosis (ISR), caused by aggressive vascular smooth muscle cell (VSMC) proliferation, is a serious complication of stenting. Therefore, developing therapeutic approaches that target VSMC inhibition is imperative. Our previous study showed that VSMC hyperplasia was attenuated after iron stent degradation, and VSMC proliferation around the stented section was arrested. The corrosion products of the iron stents were primarily Fe3O4 particles. Therefore, we hypothesized that Fe3O4 particles generated by iron stents would prevent neointimal hyperplasia by inhibiting VSMC proliferation. To test this hypothesis, culture assays and flow cytometry were performed to investigate the proliferation of VSMC. Global gene sequencing and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to investigate the underlying mechanisms. Fe3O4-coated stents were implanted into rabbit carotid arteries to evaluate the inhibitory effects of Fe3O4 on neointimal hyperplasia. The major findings of the study were as follows: 1) Fe3O4 attenuated neointimal hyperplasia by preventing VSMC proliferation after stenting; 2) Fe3O4 exerted inhibitory effects on VSMCs by downregulating proliferative genes such as SOX9, EGR4, and TGFB1, but upregulated inhibitory genes such as DNMT1, TIMP3, and PCNA; 3) Fe3O4 inhibited VSMCs by preventing phenotypic transformation from the contractile to the synthetic phase; and 4) Fe3O4-coated stents achieved satisfactory hemocompatibility in a rabbit model. Our study highlights the additional benefits of Fe3O4 particles in inhibiting VSMC proliferation, indicating that Fe3O4 coated stent potentially served as an attractive therapeutic approach for ISR prevention.
Databáze: Directory of Open Access Journals