Autor: |
Wenjie Zuo, Mingguang Shao |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Electronic Research Archive, Vol 30, Iss 11, Pp 4066-4085 (2022) |
Druh dokumentu: |
article |
ISSN: |
2688-1594 |
DOI: |
10.3934/era.2022206?viewType=HTML |
Popis: |
In this article, we investigate the dynamics of a stochastic HIV model with a Hill-type infection rate and distributed delay, which are better choices for mass action laws. First, we transform a stochastic system with weak kernels into a degenerate high-dimensional system. Then the existence of a stationary distribution is obtained by constructing a suitable Lyapunov function, which determines a sharp critical value $ R_0^s $ corresponding to the basic reproduction number for the determined system. Moreover, the sufficient condition for the extinction of diseases is derived. More importantly, the exact expression of the probability density function near the quasi-equilibrium is obtained by solving the Fokker-Planck equation. Finally, numerical simulations are illustrated to verify the theoretical results. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|