Popis: |
Neurodevelopment disorders can result in facial dysmorphisms. Therefore, the analysis of facial images using image processing and machine learning techniques can help construct systems for diagnosing genetic syndromes and neurodevelopmental disorders. The systems offer faster and cost-effective alternatives for genotyping tests, particularly when dealing with large-scale applications. However, there are still challenges to overcome to ensure the accuracy and reliability of computer-aided diagnosis systems. This article presents a systematic review of such initiatives, including 55 articles. The main aspects used to develop these diagnostic systems were discussed, namely datasets - availability, type of image, size, ethnicities and syndromes - types of facial features, techniques used for normalization, dimensionality reduction and classification, deep learning, as well as a discussion related to the main gaps, challenges and opportunities. |