Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials

Autor: Juan F. Mañas-Mañas, Juan J. Moreno-Balcázar, Richard Wellman
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Mathematics, Vol 8, Iss 2, p 182 (2020)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math8020182
Popis: In this paper, we consider a discrete Sobolev inner product involving the Jacobi weight with a twofold objective. On the one hand, since the orthonormal polynomials with respect to this inner product are eigenfunctions of a certain differential operator, we are interested in the corresponding eigenvalues, more exactly, in their asymptotic behavior. Thus, we can determine a limit value which links this asymptotic behavior and the uniform norm of the orthonormal polynomials in a logarithmic scale. This value appears in the theory of reproducing kernel Hilbert spaces. On the other hand, we tackle a more general case than the one considered in the literature previously.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje