Autor: |
Juan F. Mañas-Mañas, Juan J. Moreno-Balcázar, Richard Wellman |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 8, Iss 2, p 182 (2020) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math8020182 |
Popis: |
In this paper, we consider a discrete Sobolev inner product involving the Jacobi weight with a twofold objective. On the one hand, since the orthonormal polynomials with respect to this inner product are eigenfunctions of a certain differential operator, we are interested in the corresponding eigenvalues, more exactly, in their asymptotic behavior. Thus, we can determine a limit value which links this asymptotic behavior and the uniform norm of the orthonormal polynomials in a logarithmic scale. This value appears in the theory of reproducing kernel Hilbert spaces. On the other hand, we tackle a more general case than the one considered in the literature previously. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|