Autor: |
Christian Ranacher, Cristina Consani, Natalie Vollert, Andreas Tortschanoff, Markus Bergmeister, Thomas Grille, Bernhard Jakoby |
Jazyk: |
angličtina |
Rok vydání: |
2018 |
Předmět: |
|
Zdroj: |
IEEE Photonics Journal, Vol 10, Iss 5, Pp 1-14 (2018) |
Druh dokumentu: |
article |
ISSN: |
1943-0655 |
DOI: |
10.1109/JPHOT.2018.2866628 |
Popis: |
Photonic sensors that operate in the mid-infrared spectral range are an emerging field for photonic microsystems. In this paper, we present a photonic gas sensor concept based on silicon waveguides using infrared evanescent field absorption. The waveguides were specifically designed for CO2 sensing at a wavelength of λ = 4.26μm as possible application for the proposed sensor platform. The waveguide cross section as well as the substructure were investigated using finite-element simulations and the devised structures were fabricated using mass fabrication processes exclusively. In order to evaluate the potential for long interaction path lengths using polysilicon strip waveguides, a study on the intrinsic losses of polysilicon waveguides was conducted. The lowest intrinsic damping that was obtained for polysilicon strip waveguides was 3.98 dB/cm. Furthermore, the sensing capability of the devised waveguides was tested with quantitative CO2 measurements down to a concentration of 500 ppm CO2. From the quantitative measurements, the evanescent field ratio was estimated and was in the range between η = 14%-16%. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|