Autor: |
Shubham Mondal, Eitan Hershkovitz, Garrett Baucom, Md Mehedi Hasan Tanim, Shaurya Dabas, Baibhab Chatterjee, Honggyu Kim, Roozbeh Tabrizian, Zetian Mi |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
APL Materials, Vol 12, Iss 11, Pp 111111-111111-7 (2024) |
Druh dokumentu: |
article |
ISSN: |
2166-532X |
DOI: |
10.1063/5.0225280 |
Popis: |
We report on the molecular beam epitaxial growth and characterization of polarity-controlled single and multi-layer Scandium Aluminum Nitride (ScAlN) transduction structures grown directly on ScAlN templates deposited by physical vapor deposition (PVD) on Si(001) substrates. It is observed that direct epitaxial growth on PVD N-polar ScAlN leads to the flipping of polarity, resulting in metal (M)-polar ScAlN. By effectively removing the surface impurities, e.g., oxides, utilizing an in situ gallium (Ga)-assisted flushing technique, we show that high quality N-polar ScAlN epilayers can be achieved on PVD N-polar ScAlN templates. The polarity of ScAlN is confirmed by utilizing polarity-sensitive wet chemical etching and atomic-resolution scanning transmission electron microscopy. Through interface engineering, i.e., the controlled formation or removal of surface oxides, we have further demonstrated the ability to epitaxially grow an alternating tri-layer piezoelectric structure, consisting of N-polar, M-polar, and N-polar ScAlN layers. Such multi-layer, polarity-controlled ScAlN structures promise a manufacturable platform for the design and development of a broad range of acoustic and photonic devices. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|