Symmetry and Its Role in Oscillation of Solutions of Third-Order Differential Equations

Autor: M. Sathish Kumar, Omar Bazighifan, Khalifa Al-Shaqsi, Fongchan Wannalookkhee, Kamsing Nonlaopon
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Symmetry, Vol 13, Iss 8, p 1485 (2021)
Druh dokumentu: article
ISSN: 2073-8994
DOI: 10.3390/sym13081485
Popis: Symmetry plays an essential role in determining the correct methods for the oscillatory properties of solutions to differential equations. This paper examines some new oscillation criteria for unbounded solutions of third-order neutral differential equations of the form (r2(ς)((r1(ς)(z′(ς))β1)′)β2)′ + ∑i=1nqi(ς)xβ3(ϕi(ς))=0. New oscillation results are established by using generalized Riccati substitution, an integral average technique in the case of unbounded neutral coefficients. Examples are given to prove the significance of new theorems.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje