Autor: |
Luqman S. Maraaba, Ssennoga Twaha, Azhar Memon, Zakariya Al-Hamouz |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Symmetry, Vol 12, Iss 8, p 1370 (2020) |
Druh dokumentu: |
article |
ISSN: |
2073-8994 |
DOI: |
10.3390/sym12081370 |
Popis: |
This paper presents a novel stator inter-turn fault diagnosis method for Line Start Permanent Magnet Synchronous Motors (LSPMSMs) using the frequency analysis of acoustic signals resulting from asymmetrical faults. In this method, acoustic data are experimentally collected from a 1 hp interior mount LSPMSM for different inter-turn fault cases and motor loading levels, while including the background noise. The signals are collected using a smartphone at a sampling rate of 48,000 samples per second. The signal for each case is analyzed using fast Fourier transform (FFT), which results in the decomposition of the signal into its frequency components. The results indicate that, for both no-load and full-load conditions, 39 components are observed to be affected by the faults, whereby their amplitudes increase with the fault severity. The 40-turns fault shows the highest difference in the component amplitudes compared with the healthy condition acoustic signal. Therefore, this diagnostic method is able to detect the stator inter-turn fault for interior mount LSPMSMs. Moreover, the method is simple and cheap since it uses a readily available sensor. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|