Asymptotic problems for differential equations with bounded $\Phi$-Laplacian

Autor: Zuzana Dosla, M. Cecchi, Mauro Marini
Jazyk: angličtina
Rok vydání: 2009
Předmět:
Zdroj: Electronic Journal of Qualitative Theory of Differential Equations, Vol 2009, Iss 9, Pp 1-18 (2009)
Druh dokumentu: article
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2009.4.9
Popis: In this paper we deal with the asymptotic problem \begin{equation*} \bigl(a(t)\Phi (x^{\prime })\bigr)^{\prime }+b(t)F(x)=0\,,\quad \lim_{t\rightarrow \infty }x^{\prime }(t)=0\,,\quad x(t)>0\mbox{ for large } t\,.\qquad (\ast ) \end{equation*} Motivated by searching for positive radially symmetric solutions in a fixed exterior domain in ${\mathbb{R}}^{N}$ for partial differential equations involving the curvature operator, the global positiveness and uniqueness of (*) is also considered.
Databáze: Directory of Open Access Journals