Autor: |
George Kaimakamis, Konstantina Panagiotidou, Juan de Dios Pérez |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 8, Iss 4, p 642 (2020) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math8040642 |
Popis: |
The Levi-Civita connection and the k-th generalized Tanaka-Webster connection are defined on a real hypersurface M in a non-flat complex space form. For any nonnull constant k and any vector field X tangent to M the k-th Cho operator F X ( k ) is defined and is related to both connections. If X belongs to the maximal holomorphic distribution D on M, the corresponding operator does not depend on k and is denoted by F X and called Cho operator. In this paper, real hypersurfaces in non-flat space forms such that F X S = S F X , where S denotes the Ricci tensor of M and a further condition is satisfied, are classified. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|