Characterization of trees with Roman bondage number 1

Autor: Fu-Tao Hu, Xing Wei Wang, Ning Li
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: AIMS Mathematics, Vol 5, Iss 6, Pp 6183-6188 (2020)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2020397/fulltext.html
Popis: Let $G=(V,E)$ be a simple undirected graph. A Roman dominating function on $G$ is a function $f: V\to \{0,1,2\}$ satisfying the condition that every vertex $u$ with $f(u)=0$ is adjacent to at least one vertex $v$ with $f(v)=2$. The weight of a Roman dominating function is the value $f(G)=\sum_{u\in V} f(u)$. The Roman domination number of $G$ is the minimum weight of a Roman dominating function on $G$. The Roman bondage number of a nonempty graph $G$ is the minimum number of edges whose removal results in a graph with the Roman domination number larger than that of $G$. Rad and Volkmann [9] proposed a problem that is to determine the trees $T$ with Roman bondage number $1$. In this paper, we characterize trees with Roman bondage number $1$.
Databáze: Directory of Open Access Journals