Autor: |
Fu-Tao Hu, Xing Wei Wang, Ning Li |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
AIMS Mathematics, Vol 5, Iss 6, Pp 6183-6188 (2020) |
Druh dokumentu: |
article |
ISSN: |
2473-6988 |
DOI: |
10.3934/math.2020397/fulltext.html |
Popis: |
Let $G=(V,E)$ be a simple undirected graph. A Roman dominating function on $G$ is a function $f: V\to \{0,1,2\}$ satisfying the condition that every vertex $u$ with $f(u)=0$ is adjacent to at least one vertex $v$ with $f(v)=2$. The weight of a Roman dominating function is the value $f(G)=\sum_{u\in V} f(u)$. The Roman domination number of $G$ is the minimum weight of a Roman dominating function on $G$. The Roman bondage number of a nonempty graph $G$ is the minimum number of edges whose removal results in a graph with the Roman domination number larger than that of $G$. Rad and Volkmann [9] proposed a problem that is to determine the trees $T$ with Roman bondage number $1$. In this paper, we characterize trees with Roman bondage number $1$. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|