Unfolding the dynamics of driving behavior: a machine learning analysis from Germany and Belgium

Autor: Stella Roussou, Eva Michelaraki, Christos Katrakazas, Amir Pooyan Afghari, Christelle Al Haddad, Md Rakibul Alam, Constantinos Antoniou, Eleonora Papadimitriou, Tom Brijs, George Yannis
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: European Transport Research Review, Vol 16, Iss 1, Pp 1-13 (2024)
Druh dokumentu: article
ISSN: 1866-8887
DOI: 10.1186/s12544-024-00655-z
Popis: Abstract The i-DREAMS project focuses on establishing a framework known as the ‘Safety Tolerance Zone (STZ)’ to ensure drivers operate within safe boundaries. This study compares Long-Short-Term-Memory Networks and shallow Neural Networks to assess participants’ safety levels during i-DREAMS on-road trials. Thirty German drivers’ trips and Forty-Three Belgian drivers were analyzed using these methods, revealing factors contributing to risky behavior. Results indicate i-DREAMS interventions significantly enhance driving behavior, with Neural Networks displaying superior performance among the algorithms considered.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje