CRUSTY: a versatile web platform for the rapid analysis and visualization of high-dimensional flow cytometry data

Autor: Simone Puccio, Giorgio Grillo, Giorgia Alvisi, Caterina Scirgolea, Giovanni Galletti, Emilia Maria Cristina Mazza, Arianna Consiglio, Gabriele De Simone, Flavio Licciulli, Enrico Lugli
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Nature Communications, Vol 14, Iss 1, Pp 1-7 (2023)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-023-40790-0
Popis: Abstract Flow cytometry (FCM) can investigate dozens of parameters from millions of cells and hundreds of specimens in a short time and at a reasonable cost, but the amount of data that is generated is considerable. Computational approaches are useful to identify novel subpopulations and molecular biomarkers, but generally require deep expertize in bioinformatics and the use of different platforms. To overcome these limitations, we introduce CRUSTY, an interactive, user-friendly webtool incorporating the most popular algorithms for FCM data analysis, and capable of visualizing graphical and tabular results and automatically generating publication-quality figures within minutes. CRUSTY also hosts an interactive interface for the exploration of results in real time. Thus, CRUSTY enables a large number of users to mine complex datasets and reduce the time required for data exploration and interpretation. CRUSTY is accessible at https://crusty.humanitas.it/ .
Databáze: Directory of Open Access Journals