Insight into the Morphological Properties of Nano-Kaolinite (Nanoscrolls and Nanosheets) on Its Qualification as Delivery Structure of Oxaliplatin: Loading, Release, and Kinetic Studies

Autor: Mashael Daghash Alqahtani, Nourhan Nasser, May N. Bin Jumah, Saleha A. AlZahrani, Ahmed A. Allam, Mostafa R. Abukhadra, Stefano Bellucci
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Molecules, Vol 28, Iss 13, p 5158 (2023)
Druh dokumentu: article
ISSN: 1420-3049
DOI: 10.3390/molecules28135158
Popis: Natural kaolinite underwent advanced morphological-modification processes that involved exfoliation of its layers into separated single nanosheets (KNs) and scrolled nanoparticles as nanotubes (KNTs). Synthetic nanostructures have been characterized as advanced and effective oxaliplatin-medication (OXAP) delivery systems. The morphological-transformation processes resulted in a remarkable enhancement in the loading capacity to 304.9 mg/g (KNs) and 473 mg/g (KNTs) instead of 29.6 mg/g for raw kaolinite. The loading reactions that occurred by KNs and KNTs displayed classic pseudo-first-order kinetics (R2 > 0.90) and conventional Langmuir isotherms (R2 = 0.99). KNTs exhibit a higher active site density (80.8 mg/g) in comparison to KNs (66.3 mg/g) and raw kaolinite (6.5 mg/g). Furthermore, compared to KNs and raw kaolinite, each site on the surface of KNTs may hold up to six molecules of OXAP (n = 5.8), in comparison with five molecules for KNs. This was accomplished by multi-molecular processes, including physical mechanisms considering both the Gaussian energy (
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje