On Approximate Solutions of the Generalized Radical Cubic Functional Equation in Quasi-$beta$-Banach Spaces

Autor: Prondanai Kaskasem, Aekarach Janchada, Chakkrid Klin-eam
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Sahand Communications in Mathematical Analysis, Vol 17, Iss 1, Pp 69-90 (2020)
Druh dokumentu: article
ISSN: 2322-5807
2423-3900
DOI: 10.22130/scma.2018.87694.451
Popis: In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the generalized radical cubic functional equation[ fleft( sqrt[3]{ax^3 + by^3}right)=af(x) + bf(y),] where $a,b in mathbb{R}_+$ are fixed positive real numbers, by using direct method in quasi-$beta$-Banach spaces. Moreover, we use subadditive functions to investigate stability of the generalized radical cubic functional equations in $(beta,p)$-Banach spaces.
Databáze: Directory of Open Access Journals