On Approximate Solutions of the Generalized Radical Cubic Functional Equation in Quasi-$beta$-Banach Spaces
Autor: | Prondanai Kaskasem, Aekarach Janchada, Chakkrid Klin-eam |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Sahand Communications in Mathematical Analysis, Vol 17, Iss 1, Pp 69-90 (2020) |
Druh dokumentu: | article |
ISSN: | 2322-5807 2423-3900 |
DOI: | 10.22130/scma.2018.87694.451 |
Popis: | In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the generalized radical cubic functional equation[ fleft( sqrt[3]{ax^3 + by^3}right)=af(x) + bf(y),] where $a,b in mathbb{R}_+$ are fixed positive real numbers, by using direct method in quasi-$beta$-Banach spaces. Moreover, we use subadditive functions to investigate stability of the generalized radical cubic functional equations in $(beta,p)$-Banach spaces. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |