Autor: |
Julio M. Duarte-Carvajalino, Diego F. Alzate, Andrés A. Ramirez, Juan D. Santa-Sepulveda, Alexandra E. Fajardo-Rojas, Mauricio Soto-Suárez |
Jazyk: |
angličtina |
Rok vydání: |
2018 |
Předmět: |
|
Zdroj: |
Remote Sensing, Vol 10, Iss 10, p 1513 (2018) |
Druh dokumentu: |
article |
ISSN: |
2072-4292 |
DOI: |
10.3390/rs10101513 |
Popis: |
This work presents quantitative prediction of severity of the disease caused by Phytophthora infestans in potato crops using machine learning algorithms such as multilayer perceptron, deep learning convolutional neural networks, support vector regression, and random forests. The machine learning algorithms are trained using datasets extracted from multispectral data captured at the canopy level with an unmanned aerial vehicle, carrying an inexpensive digital camera. The results indicate that deep learning convolutional neural networks, random forests and multilayer perceptron using band differences can predict the level of Phytophthora infestans affectation on potato crops with acceptable accuracy. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|