Estimativa da produtividade da cana-de-açúcar utilizando o Sebal e imagens Landsat

Autor: Ricardo Guimarães Andrade, Gilberto Sediyama, Vicente Paulo Soares, José Marinaldo Gleriani, Sady Junior Martins da Costa Menezes
Jazyk: English<br />Portuguese
Rok vydání: 2014
Předmět:
Zdroj: Revista Brasileira de Meteorologia, Vol 29, Iss 3, Pp 433-442 (2014)
Druh dokumentu: article
ISSN: 1982-4351
0102-7786
DOI: 10.1590/0102-778620130022
Popis: As técnicas de sensoriamento remoto têm sido muito promissoras para o desenvolvimento de medidas mais confiáveis e economicamente viáveis da produção vegetal em larga escala. O algoritmo SEBAL (Surface Energy Balance Algorithm for Land) tem como vantagem a obtenção de parâmetros biofísicos usando imagens de satélite e poucos dados observacionais. Este trabalho objetivou estimar a produtividade da cana-de-açúcar por meio da aplicação do algoritmo SEBAL e de imagens Landsat 5 TM. O estudo foi realizado em plantios de cana-de-açúcar da fazenda Boa Fé, localizada no Triângulo Mineiro, município de Conquista, Minas Gerais. A metodologia utilizada apresentou variação de desempenho nas estimativas de produtividade da cana-de-açúcar de cada gleba, provavelmente em decorrência de influências da dimensão dos talhões e da resolução espacial da imagem, e de variedades e épocas de plantio e colheita da cultura. No entanto, os resultados apontam que a metodologia tem potencial para ser aplicada em áreas extensas com limitada disponibilidade de dados meteorológicos.
Databáze: Directory of Open Access Journals