Developing an Artificial Intelligence-Based Representation of a Virtual Patient Model for Real-Time Diagnosis of Acute Respiratory Distress Syndrome

Autor: Chadi S. Barakat, Konstantin Sharafutdinov, Josefine Busch, Sina Saffaran, Declan G. Bates, Jonathan G. Hardman, Andreas Schuppert, Sigurður Brynjólfsson, Sebastian Fritsch, Morris Riedel
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Diagnostics, Vol 13, Iss 12, p 2098 (2023)
Druh dokumentu: article
ISSN: 2075-4418
DOI: 10.3390/diagnostics13122098
Popis: Acute Respiratory Distress Syndrome (ARDS) is a condition that endangers the lives of many Intensive Care Unit patients through gradual reduction of lung function. Due to its heterogeneity, this condition has been difficult to diagnose and treat, although it has been the subject of continuous research, leading to the development of several tools for modeling disease progression on the one hand, and guidelines for diagnosis on the other, mainly the “Berlin Definition”. This paper describes the development of a deep learning-based surrogate model of one such tool for modeling ARDS onset in a virtual patient: the Nottingham Physiology Simulator. The model-development process takes advantage of current machine learning and data-analysis techniques, as well as efficient hyperparameter-tuning methods, within a high-performance computing-enabled data science platform. The lightweight models developed through this process present comparable accuracy to the original simulator (per-parameter R2 > 0.90). The experimental process described herein serves as a proof of concept for the rapid development and dissemination of specialised diagnosis support systems based on pre-existing generalised mechanistic models, making use of supercomputing infrastructure for the development and testing processes and supported by open-source software for streamlined implementation in clinical routines.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje