Integral Laplacian graphs with a unique repeated Laplacian eigenvalue, I

Autor: Hameed Abdul, Tyaglov Mikhail
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Special Matrices, Vol 11, Iss 1, Pp 2409-2425 (2023)
Druh dokumentu: article
ISSN: 2300-7451
DOI: 10.1515/spma-2023-0111
Popis: The set Si,n={0,1,2,…,n−1,n}\{i}{S}_{i,n}=\left\{0,1,2,\ldots ,n-1,n\right\}\setminus \left\{i\right\}, 1⩽i⩽n1\leqslant i\leqslant n, is called Laplacian realizable if there exists an undirected simple graph whose Laplacian spectrum is Si,n{S}_{i,n}. The existence of such graphs was established by Fallat et al. (On graphs whose Laplacian matrices have distinct integer eigenvalues, J. Graph Theory 50 (2005), 162–174). In this article, we consider graphs whose Laplacian spectra have the form S{i,j}nm={0,1,2,…,m−1,m,m,m+1,…,n−1,n}\{i,j},0
Databáze: Directory of Open Access Journals