Autor: |
Zhongxian Li, Jiawei Xiang, Qiang Zhang, Mingyuan Zhao, Yuan Meng, Jie Zhong, Tingting Li, Lanxin Jia, Kai Li, Xi Lu, Zhuo Ao, Dong Han |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Frontiers in Bioengineering and Biotechnology, Vol 10 (2022) |
Druh dokumentu: |
article |
ISSN: |
2296-4185 |
DOI: |
10.3389/fbioe.2022.1072393 |
Popis: |
Stimulating immunogenic cell death (ICD) is the key to tumor immunotherapy. However, traditional chemoradiotherapy has limited effect on stimulating immunity and often requires repeated administration, which greatly reduces the tumor-killing effect. In this article, we created a sodium alginate hydrogel sustained-release system containing low-dose doxorubicin (Dox) and immune adjuvant R837, which were injected into the interstitial space to wrap around the tumor in situ, achieving a sustained release and long-lasting immune response. Cooperating with immune checkpoint blockade, Dox induced ICD, activated dendritic cells (DCs) and converted immunosuppressive M2-type tumor-associated macrophages (TAM) to tumor-killing M1-type TAMs. Simultaneously, it greatly promoted T cell proliferation and infiltration, and reduced tumor immunosuppressive factors, triggering a robust immune response to suppress tumors in vivo. In conclusion, this anti-tumor strategy based on interstitial injection can achieve continuous local immune stimulation by low-dose chemotherapy drugs, providing a potential approach for tumor immunotherapy. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|