On generalized Jordan ∗-derivation in rings

Autor: Nadeem ur Rehman, Abu Zaid Ansari, Tarannum Bano
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Journal of the Egyptian Mathematical Society, Vol 22, Iss 1, Pp 11-13 (2014)
Druh dokumentu: article
ISSN: 1110-256X
DOI: 10.1016/j.joems.2013.04.011
Popis: Let n ⩾ 1 be a fixed integer and let R be an (n + 1)!-torsion free ∗-ring with identity element e. If F, d:R → R are two additive mappings satisfying F(xn+1) = F(x)(x∗)n + xd(x)(x∗)n−1 + x2d(x)(x∗)n−2+ ⋯ +xnd(x) for all x ∈ R, then d is a Jordan ∗-derivation and F is a generalized Jordan ∗-derivation on R.
Databáze: Directory of Open Access Journals