Supercharacters, symmetric functions in noncommuting variables (extended abstract)

Autor: Marcelo Aguiar, Carlos André, Carolina Benedetti, Nantel Bergeron, Zhi Chen, Persi Diaconis, Anders Hendrickson, Samuel Hsiao, I. Martin Isaacs, Andrea Jedwab, Kenneth Johnson, Gizem Karaali, Aaron Lauve, Tung Le, Stephen Lewis, Huilan Li, Kay Magaard, Eric Marberg, Jean-Christophe Novelli, Amy Pang, Franco Saliola, Lenny Tevlin, Jean-Yves Thibon, Nathaniel Thiem, Vidya Venkateswaran, C. Ryan Vinroot, Ning Yan, Mike Zabrocki
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Zdroj: Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings vol. AO,..., Iss Proceedings (2011)
Druh dokumentu: article
ISSN: 1365-8050
DOI: 10.46298/dmtcs.2967
Popis: We identify two seemingly disparate structures: supercharacters, a useful way of doing Fourier analysis on the group of unipotent uppertriangular matrices with coefficients in a finite field, and the ring of symmetric functions in noncommuting variables. Each is a Hopf algebra and the two are isomorphic as such. This allows developments in each to be transferred. The identification suggests a rich class of examples for the emerging field of combinatorial Hopf algebras.
Databáze: Directory of Open Access Journals