Provenance of classical Hamiltonian time crystals

Autor: Anton Alekseev, Jin Dai, Antti J. Niemi
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Journal of High Energy Physics, Vol 2020, Iss 8, Pp 1-21 (2020)
Druh dokumentu: article
ISSN: 1029-8479
DOI: 10.1007/JHEP08(2020)035
Popis: Abstract Classical Hamiltonian systems with conserved charges and those with constraints often describe dynamics on a pre-symplectic manifold. Here we show that a pre-symplectic manifold is also the proper stage to describe autonomous energy conserving Hamiltonian time crystals. We explain how the occurrence of a time crystal relates to the wider concept of spontaneously broken symmetries; in the case of a time crystal, the symmetry breaking takes place in a dynamical context. We then analyze in detail two examples of timecrystalline Hamiltonian dynamics. The first example is a piecewise linear closed string, with dynamics determined by a Lie-Poisson bracket and Hamiltonian that relates to membrane stability. We explain how the Lie-Poisson brackets descents to a time-crystalline pre-symplectic bracket, and we show that the Hamiltonian dynamics supports two phases; in one phase we have a time crystal and in the other phase time crystals are absent. The second example is a discrete one dimensional model of a Hamiltonian chain. It is obtained by a reduction from the Q-ball Lagrangian that describes time dependent nontopological solitons. We show that a time crystal appears as a minimum energy domain wall configuration, along the chain.
Databáze: Directory of Open Access Journals