Autor: |
Yuki Yanagawa, Kasumi Takeuchi, Masaki Endo, Ayako Furutani, Hirokazu Ochiai, Seiichi Toki, Ichiro Mitsuhara |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Plants, Vol 9, Iss 9, p 1070 (2020) |
Druh dokumentu: |
article |
ISSN: |
2223-7747 |
DOI: |
10.3390/plants9091070 |
Popis: |
Xanthomonas campestris is one of bacteria carrying a type III secretion system which transports their effector proteins into host plant cells to disturb host defense system for their infection. To establish a genome editing system without introducing any foreign gene, we attempted to introduce genome editing enzymes through the type III secretion system. In a test of protein transfer, X. campestris pv. campestris (Xcc) transported a considerable amount of a reporter protein sGFP-CyaA into tobacco plant cells under the control of the type III secretion system while maintaining cell viability. For proof of concept for genome editing, we used a reporter tobacco plant containing a luciferase (LUC) gene interrupted by a meganuclease I-SceI recognition sequence; this plant exhibits chemiluminescence of LUC only when a frameshift mutation is introduced at the I-SceI recognition site. Luciferase signal was observed in tobacco leaves infected by Xcc carrying an I-SceI gene which secretes I-SceI protein through the type III system, but not leaves infected by Xcc carrying a vector control. Genome-edited tobacco plant could be regenerated from a piece of infected leaf piece by repeated selection of LUC positive calli. Sequence analysis revealed that the regenerated tobacco plant possessed a base deletion in the I-SceI recognition sequence that activated the LUC gene, indicating genome editing by I-SceI protein transferred through the type III secretion system of Xcc. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|