Autor: |
Sanshu Lv, Xuedong Chen, Zhichao Fan, Yu Zhou, Hao Yang, Qiang Zhang, Mingjian Chi, Yue Li |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Chinese Journal of Mechanical Engineering, Vol 37, Iss 1, Pp 1-8 (2024) |
Druh dokumentu: |
article |
ISSN: |
2192-8258 |
DOI: |
10.1186/s10033-024-01133-2 |
Popis: |
Abstract To evaluate the room-temperature hydrogen embrittlement susceptibility (HES) of high-pressure hydrogen storage vessels, a modified slow-strain-rate tensile (MSSRT) testing method was proposed for effectively aligning with their actual operating conditions. The effectiveness of the MSSRT testing method in evaluating the room-temperature HES of steels under high pressure was validated by comparing the results obtained using the conventional slow strain rate tensile (SSRT) and proposed MSSRT testing methods for 30CrMo steel, which is widely used for manufacturing high-pressure hydrogen storage vessels. The tensile properties and fracture morphologies of 23Cr2Ni4MoV steel were then examined using the MSSRT testing method under 35 MPa hydrogen and nitrogen at room temperature. Results indicate that 35 MPa hydrogen exerted a marginal effect on the tensile properties of 23Cr2Ni4MoV steel at room temperature when considering the MSSRT testing method; moreover, the test specimen basically exhibited macroscopic ductile fracture. Furthermore, obvious surface cracking was observed on the fractured specimen tested under hydrogen, whereas surface cracking was not observed on the fractured specimen tested under nitrogen. Hence, the relative reduction of area and surface cracking are necessary criteria for evaluating the room-temperature HES of steels using the MSSRT testing method. Overall, 23Cr2Ni4MoV steel might be unsuitable for manufacturing high-pressure hydrogen storage vessels. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|